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Abstract— Ultra-reliable low latency communication (URLLC)
is one of three primary use cases in the fifth-generation (5G)
networks, and its research is still in its infancy due to its
stringent and conflicting requirements in terms of extremely
high reliability and low latency. To reduce latency, the channel
blocklength for packet transmission is finite, which incurs trans-
mission rate degradation and higher decoding error probability.
In this case, conventional resource allocation based on Shannon
capacity achieved with infinite blocklength codes is not optimal.
Security is another critical issue in mission-critical internet of
things (IoT) communications, and physical-layer security is a
promising technique that can ensure the confidentiality for wire-
less communications as no additional channel uses are needed for
the key exchange as in the conventional upper-layer cryptography
method. This paper is the first work to study the resource
allocation for a secure mission-critical IoT communication system
with URLLC. Specifically, we adopt the security capacity formula
under finite blocklength and consider two optimization problems:
weighted throughput maximization problem and total transmit
power minimization problem. Each optimization problem is
non-convex and challenging to solve, and we develop efficient
methods to solve each optimization problem. Simulation results
confirm the fast convergence speed of our proposed algorithm
and demonstrate the performance advantages over the existing
benchmark algorithms.

Index Terms— URLLC, secure communications, short packet
transmission, mission-critical applications, industrial 4.0.

I. INTRODUCTION

THE fifth-generation (5G) networks are expected to sup-
port three main use cases: enhanced mobile broadband

(eMBB), massive machine type communication (mMTC), and
ultra-reliable low latency communication (URLLC) [1]. Sig-
nificant advancement has been achieved in the last decade
for the use case of eMBB characterized by high through-
put and data rate. Some typical techniques include mas-
sive multiple-input multiple-output (MIMO) and mmWave
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communications. For the use case of mMTC, 5G networks
aim to provide massive connectivity to tens of billions
of low-cost small-size machine-type devices such as smart
glasses, smart thermometers, wireless sensors, etc. Some
access protocols such as random access and grant-free access
are shown to be effective in mMTC. However, the realization
of URLLC is more challenging than eMBB and mMTC due
to the fact that URLLC targets at two stringent quality-
of-service (QoS) requirements in term of extremely high
reliability (e.g., 1− 10−9) and ultra-low latency (e.g., 1 ms),
which are conflicting with each other. Specifically, to achieve
high reliability, long codeword with redundancy is required,
which increases the latency. On the other hand, short
packet/codeword is mandated to achieve low latency, which
lowers the reliability performance. The research of URLLC is
still in its infancy and is main target of Release 17. In addition,
URLLC is closely relevant to mission-critical internet of
things (IoT) applications with emphasis on high reliability
and low latency, such as autonomous factory manufacture,
remote surgery, unmanned aerial vehicles (UAVs) control, and
vehicular communication networks.

The primary feature associated with URLLC compared with
conventional human-to-human communications is its short
packet transmission feature, which is adopted to guarantee
ultra-low latency. In this case, the law of large numbers is not
valid and Shannon capacity cannot be applied to characterize
the system capacity. Knowing that short blocklength is adopted
in URLLC, the decoding error probability will not approach
zero even when signal-to-noise ratio (SNR) is arbitrarily high.
If Shannon capacity expression is directly applied for transmis-
sion design, the reliability and latency will be underestimated,
and the QoS cannot be guaranteed. In [2], the authors first
derived the approximate expression of the data rate for a
point-to-point AWGN channel under the case of finite chan-
nel blocklength, which is a function of the SNR, channel
blocklength, and decoding error probability. Recently, this
information-theoretical result has been adopted to design the
resource allocation in various communication systems [3]–[9].
Specifically, a wireless-powered IoT network with short packet
communication was studied in [3], where the transmission time
and packet error rate of each device was jointly optimized
to maximize the effective-throughput that accounts for both
the transmission efficiency and reliability performance. Joint
optimization of the channel blocklength and UAV location was
investigated in [4] to minimize the decoding error probability.
The authors in [5] derived the average achievable data rate
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from the control information delivery from the ground control
station to UAV under a three-dimensional channel model.
In [6], the resource allocation for non-orthogonal multiple
access (NOMA) short-packet communications was studied for
a simple two-user scenario. A cross-layer framework was
established in [7] for short packet transmission in mobile edge
computing IoT networks. A resource allocation problem for a
factory automation scenario was optimized in [8] to minimize
the decoding error probability for four transmission schemes,
e.g., orthogonal multiple access, NOMA, relay-assisted, and
cooperative NOMA schemes. In [9], the authors proposed to
adopt the compelling massive MIMO technique to support the
transmission for massive amount of devices in industrial IoT
networks, in which channel hardening effect can be exploited
to reduce the computational and operational latency.

On the other hand, due to the broadcast nature of wireless
communications, IoT applications such as industrial robots are
particularly vulnerable to security threats (e.g. critical con-
trol information leakage or malicious attack). Conventionally,
the security is enhanced through cryptography at the upper
layers of the communication system. However, the secret key
exchange and management is complicated and needs addi-
tional channel uses to accomplish these protocols. In URLLC,
channel blocklength is limited, and the cryptography method
may not be applicable in URLLC applications. On the other
hand, physical layer security, which exploits the nature of
wireless channels, is more favourable for URLLC as the
complicated key exchange procedure is unnecessary. Recently,
physical-layer security has been extensively studied in the
existing literature [10]–[14]. In particular, a comprehensive
review of physical-layer security was conducted in [10],
which described secure transmission strategies for various
transmission systems. The authors in [11] presented a review
on the physical-layer security for the machine-type com-
munications (MTC), where the MTC devices have limited
hardware and limited energy storage. A novel unmanned
aerial vehicle (UAV) flight trajectory optimization was studied
in [12] to maximize the minimum secrecy rate of ground
terminals. In [13], a secure mobile edge computing (MEC)
system was proposed where ground users can offload comput-
ing tasks to the legitimate UAV in the presence of multiple
eavesdropping UAVs. A novel secure transmission scheme
was developed in [14] to fight against the eavesdropping in
downlink multi-input single-output non-orthogonal multiple
access (NOMA) networks. However, infinite blocklength is
assumed in these papers, and the security capacity is defined
as the highest coding rate that there always exists a pair of
channel encoder and decoder such that both the decoding
error probability at the legitimate receiver and the information
leakage to the eavesdropper can be made arbitrarily small
when the channel blocklength is sufficiently large.

Unfortunately, the security capacity formula based on the
infinite blocklength assumption is not applicable for secure
URLLC applications, where short channel code/blocklength
is adopted to reduce the latency. There are only a limited
number of contributions studying the secrecy rate under
finite blocklength [15], [16]. Most recently, the approximate
security capacity formula under finite blocklength has been

derived in [15], which is more complicated than the simple
point-to-point communication system in [2]. Based on this
information-theoretical result, the authors in [16] analyzed
the performance of secure short-packet communications in a
mission-critical IoT system with an eavesdropper. However,
the resource allocation based on this result has not yet been
studied.

Against the above background, the resource allocation prob-
lem for a secure mission-critical IoT system under short
packet communications is studied in this paper. Specifically,
the contributions are summarized as follows:

1) We first consider the weighted sum throughput (WST)
maximization problem by jointly optimizing the band-
width unit and power allocation, while guaranteeing the
total power and bandwidth constraints. This optimization
problem is challenging to solve due to the following rea-
sons. First, this problem involves the discrete variables
associated with the number of bandwidth unit allocation.
Second, the optimization variables are coupled in the
objective function. Hence, this problem is a non-convex
mixed-integer programming. To handle this problem,
we develop an efficient iterative algorithm based on the
principles of block coordinate descent (BCD) along with
the successive convex approximation (SCA) method to
solve this problem. Both the convergence and com-
plexity analysis are provided. Greedy search method is
adopted to convert the continuous variables into discrete
ones.

2) We then jointly optimize the power and channel band-
width unit allocation to minimize the total transmit
power (TTP) for a mission-critical IoT system under
short packet communications, while guaranteeing the
minimum security capacity of each device and the total
channel blocklength. The optimization problem is a
non-convex and mixed-integer programming problem,
and NP-hard to solve. We first express the power for
each device as a function of channel blocklength, and
relax the discrete constraint for the channel blocklength
to continuous variables. Then, a sufficient condition
is proposed when the channel blocklength allocation
problem is a convex optimization problem. This con-
dition holds for typical URLLC application scenarios.
At last, greedy method is used to convert the continuous
solutions to discrete solutions.

3) Finally, simulation results confirm the performance
advantage of the proposed algorithm over the benchmark
solutions such as the conventional long packet transmis-
sion scheme, which verifies the importance of adopting
the security capacity formula under finite channel block-
length in the system design.

The rest of this paper is organized as follows. System
model and problem formulation are provided in Section II.
Weighted sum throughput maximization problem is solved in
Section III, while total transmit power minimization problem is
considered in Section IV. Simulation results along with related
discussions are shown in Section V. Finally, conclusions of
this paper are drawn in Section VI.
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Fig. 1. Illustration of a secure mission-critical IoT communication system.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink mission-critical IoT communication
system as depicted in Fig. 1, in which an access point (AP)
transmits confidential control signals to K wireless connected
devices (e.g. actuators, robots, and automated guided vehi-
cle (AGV)). Meanwhile, there is an eavesdropper that aims to
intercept the critical control signals transmitted by the AP.
The AP, K devices, and the eavesdropper are assumed to
be equipped with a single antenna. Due to the low-latency
transmission, it is not feasible to allocate different time slots
to all devices. Instead, we assume that all the devices are
allocated with orthogonal frequency bands while transmitting
over the same time duration, denoted as T .

In practical systems, the frequency band is divided into
multiple basic bandwidth units with bandwidth B0. Each
device is assumed to operate in different frequency bands
and the total frequency bandwidth allocated to the kth device
is denoted as Bk = nkB0, where nk denotes the number
of bandwidth units allocated to the kth device. We assume
that the total bandwidth allocated to all the devices should
be no larger than channel coherence bandwidth Wc. It is
assumed that Wc is divisible by B0, which can be expressed
as Wc = nmaxB0. Therefore, we have∑K

k=1
nk ≤ nmax. (1)

Then, the number of channel uses allocated for the kth device
is given by BkT . In URLLC, the transmission duration T is
extremely small, which is shorter than the channel coherence
time. Hence, the channels from the AP to K devices and
the eavesdropper stay constant over each transmission. The
channels from the AP to the kth device and the eavesdropper
are denoted as hd

k ∈ C and he ∈ C, respectively. The received
signal to noise ratio (SNR) of the kth device is given by

γd
k =

pkgd
k

nk
, (2)

where pk is the transmit power for the kth device, and gd
k =

|hd
k|2/(σ2

d,kB0) with σ2
d,k denoting the noise power spectrum

density at the kth device. It is assumed that the eavesdropper
can access all the frequency bands occupied by the devices.
Thus, when the eavesdropper attempts to eavesdrop the kth
device’s information, the received SNR at the eavesdropper is
given by

γe
k =

pkge

nk
, (3)

where ge = |he|2/(σ2
eB0

)
and σ2

e is the noise power spectrum
density at the eavesdropper. In this paper, we assume all the
channel state information (CSI) is available at the transmitter.
This is a strict assumption, and the solutions in this paper can
serve as the performance benchmark for the existing more
practical case when only imperfect or partial CSI is available
at the transmitter.

B. Achievable Secrecy Data Rate Under Finite Blocklength

It is well-known that when the number of channel uses
is sufficiently large and the transmission data rate is lower
than the secrecy capacity, we can always find a channel
coding scheme such that both the decoding error probability
and information leakage can be made as small as possible.
In URLLC, the transmission blocklength (or the number of
channel uses) is finite to guarantee low latency. However, short
blocklength transmission suffers from a non-zero decoding
error probability and non-negligible information leakage.

Based on [15], for a given channel blocklength Nk = BkT ,
to guarantee a maximum decoding error probability of εk at the
kth device, and a secrecy constraint on the information leakage
of δk, a lower bound on maximum secrecy communication rate
(bit/s/Hz) can be approximated by:

rk = Ck −
√

V d
k

Nk

Q−1(εk)
ln 2

−
√

V e
k

Nk

Q−1(δk)
ln 2

, (4)

where Ck = log2(1+γd
k)−log2(1+γe

k) denotes the maximum
secrecy capacity that can be achieved under infinite channel
blocklength, V x

k = 1− (1 + γx
k )−2, x ∈ {d, e} is the channel

dispersion which characterizes the random variability of a
channel with respect to a deterministic channel with the same
capacity [17], and Q−1(·) is the inverse of the Q-function

Q(x) =
∫∞

x
1√
2π

e−
t2
2 dt. A necessary condition to ensure a

positive data rate is that γd
k > γe

k [16], which is equivalent to
gd

k > ge according to (2) and (3). The total number of bits
(or throughput) that can be transmitted for each transmission
for the kth device is given by

Rk =nkB0T

⎛
⎝Ck−

√
V d

k

nkB0T

Q−1(εk)
ln 2

−
√

V e
k

nkB0T

Q−1(δk)
ln 2

⎞
⎠ .

(5)

In the following two sections, we aim to jointly optimize
the number of bandwidth units and the power allocation to
maximize the weighted sum throughput (WST) and minimize
the total transmit power (TTP), respectively.

III. WEIGHTED SUM THROUGHPUT MAXIMIZATION

In this section, we aim to maximize the WST of all devices
through jointly optimizing the number of bandwidth units and
the power allocation. Specifically, we first provide the problem
formulation. Then, one efficient algorithm is proposed to solve
the optimization problem.
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A. Problem Formulation

For the case when the AP places more emphasis on the
amount of information transmitted, we aim to jointly optimize
the power allocation and the bandwidth unit allocation to
maximize the WST of all devices while guaranteeing the
total power constraint at the AP, and the total number of
available bandwidth units. Thus, the optimization problem can
be formulated as follows:

(P1) : max
p,n

∑K

k=1
ωkRk (6a)

s.t.
∑K

k=1
pk ≤ Pmax, (6b)∑K

k=1
nk ≤ nmax, (6c)

nk ∈ N
+, ∀k = 1, · · · , K, (6d)

pk ≥ 0, ∀k = 1, · · · , K, (6e)

where p = {p1, · · · , pK}, n = {n1, · · · , nK}, ωk is a positive
weight factor used to ensure the fairness among the devices
and N+ denotes the non-negative integer set. Inequalities (6b)
and (6c) correspond to the total power constraint and total
bandwidth constraint, respectively. Constraint (6d) means that
the integer constraint for the number of bandwidth units. Note
that Rk = 0 when pk = 0, which ensures the non-negative
value of Rk in the optimal solution.

Problem (P1) is a mixed integer programming problem
due to the non-negative integer constraints on n. To make
it tractable, we relax the integer n to continuous variables,
and then convert the continuous solutions into integer ones.
Therefore, Problem (P1) is relaxed as follows:

(P2) : max
p,n

∑K

k=1
ωkRk (7a)

s.t. (6b), (6c), (6e), (7b)

nk ≥ 0, ∀k = 1, · · · , K. (7c)

However, Problem (P2) is still difficult to solve since p
and n are coupled together. To circumvent this difficulty,
we adopt the block coordinate descent (BCD) to decouple
these optimization variables. In particular, we optimize one
set of variables while keeping the others fixed, and vice
versa. Then, each subproblem is solved in an iterative manner.
Specifically, Problem (P2) is decoupled into two subproblems
as

(P2− 1) : max
p

∑K

k=1
ωkRk(pk) s.t. (6b), (6e)

(P2− 2) : max
n

∑K

k=1
ωkRk(nk) s.t. (6c), (7c)

where Problem (P2− 1) corresponds to the optimization of
power allocation p with a given number of bandwidth units n,
while Problem (P2− 2) is the optimization of the number of
bandwidth units n with given p. Each subproblem will be
solved in the following subsections.

B. The Solution of (P2-1)

In this subsection, we aim to solve the power allocation
of Problem (P2− 1) with given n. To this end, we first

define ḡd
k

Δ= gd
k

nk
, ḡe

k
Δ= ge

nk
, Ld

k = Q−1(εk)
√

Nk

ln 2 , and Le
k =

Q−1(δk)
√

Nk

ln 2 . Then, Rk(pk) can be rewritten as

Rk(pk) = Nklog2

(
1 + pkḡd

k

)−Nklog2 (1 + pkḡe
k)︸ ︷︷ ︸

fk(pk)

−
(√

V d
k Ld

k +
√

V e
k Le

k

)
︸ ︷︷ ︸

yk(pk)

. (9)

Since gd
k > ge, we have ḡd

k > ḡe
k. Before solving Prob-

lem (P2− 1), we first analyze the concave-convex property
of Rk(pk) with respect to (w.r.t.) pk. To this end, we first show
that both functions fk(pk) and yk(pk) are concave w.r.t. pk as
proved in the following lemma.

Lemma 1: fk(pk) and yk(pk) are concave w.r.t. pk, and thus
Rk(pk) is the difference of two concave functions fk(pk) and
yk(pk).

Proof : Please refer to Appendix A.
According to Lemma 1, both fk(pk) and yk(pk) are con-

cave w.r.t. pk. Hence, for given n, the objective function of
Problem (P2− 1) is a difference of two concave functions,
and thus is a non-concave function w.r.t. pk. As a reslut,
Problem (P2− 1) is a non-convex optimization problem, and
the globally optimal solution is difficult to find. However,
Problem (P2− 1) belongs to a class of difference of con-
vex (DC) problems [18], where the objective is to maximize a
difference of two concave functions. This type of optimization
problem can be efficiently solved by using the successive
convex approximation (SCA) method, which solves the DC
problem in an iterative manner.

Denote the solution of p in the (i−1)-th iteration as p(i−1).
By exploiting the concavity of yk(pk) and Jensen’s inequality,
we have

yk(pk) ≤ yk

(
p
(i−1)
k

)
+ βk(p(i−1)

k )
(
pk − p

(i−1)
k

)
, (10)

where βk(p(i−1)
k ) is the first-order derivative of y(pk) at

p
(i−1)
k , and is given by

βk(p(i−1)
k )

=

(
1+p

(i−1)
k ḡd

k

)−3

ḡd
kLd

k(
1−
(
1 + p

(i−1)
k ḡd

k

)−2
) 1

2
+

(
1+p

(i−1)
k ḡe

k

)−3

ḡe
kLe

k(
1−
(
1+p

(i−1)
k ḡe

k

)−2
) 1

2
,

> 0. (11)

By replacing yk(pk) with the right hand side (RHS) of (11),
we obtain the optimization problem to be solved in the ith
iteration, which is given by:

(P2− 1− a) : max
p

K∑
k=1

(
ωkfk(pk)−ωkβk(p(i−1)

k )pk

)
(12a)

s.t. (6b), (6e), (12b)

where the constant values have been omitted in the objec-
tive function. Note that the objective function of Prob-
lem (P2− 1− a) is a concave function and its constraints
are affine functions of p. Then, Problem (P2− 1− a) is a
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convex optimization problem. The optimal solution of Prob-
lem (P2− 1− a) can be found in the following theorem.

Theorem 1: The optimal solution of Problem (P2− 1− a)
is given by

p�
k(λ)

=

⎡
⎢⎢⎣
−(ḡd

k+ḡe
k

)
+
√(

ḡd
k + ḡe

k

)2−4ḡd
kḡe

k

(
1−η

(i−1)
k (λ)

)
2ḡd

kḡe
k

⎤
⎥⎥⎦

+

, ∀k

(13)

where [x]+ is equal to max{x, 0} and η
(i−1)
k (λ) is given by

η
(i−1)
k (λ) =

Nk

ln 2
ωk(ḡd

k − ḡe
k)

ωkβk(p(i−1)
k ) + λ

, ∀k. (14)

If
∑K

k=1 p�
k(0) ≤ Pmax, then λ = 0. Otherwise, λ is the root

of the following equation:∑K

k=1
p�

k(λ)− Pmax = 0. (15)

Proof : Please refer to Appendix B.
If
∑K

k=1 p�
k(0) > Pmax, we need to find a λ to satisfy

Equation (15). For the case of p�
k(λ) > 0, by taking the

first-order derivative of p�
k(λ) w.r.t. λ, we have ∂p�

k(λ)
∂λ < 0.

C. The Solution of (P2-2)

In this subsection, our aim is to solve Problem (P2-2)
by optimizing the number of bandwidth units with given
power allocation. For simplicity, we first define Ñ0 =
B0T, g̃d

k = pkgd
k, g̃e

k = pkge, L̃d
k =

√
Ñ0

Q−1(εk)
ln 2 , and

L̃e
k =

√
Ñ0

Q−1(σk)
ln 2 . Since gd

k > ge, we have g̃d
k > g̃e

k. Then,
Rk(nk) can be rewritten as

Rk(nk) = Ñ0nklog2

(
1 +

g̃d
k

nk

)
− Ñ0nklog2

(
1 +

g̃e
k

nk

)
︸ ︷︷ ︸

Fk(nk)

−
(√

zd
k(nk)L̃d

k +
√

ze
k(nk)L̃e

k

)
︸ ︷︷ ︸

Gk(nk)

, (16)

where zx
k (nk) = nk − n3

k

(nk+g̃x
k)2 , x ∈ {d, e}. Before solving

Problem (P2-2), we first analyze the concave-convex property
of Rk(nk). In particular, the following lemma shows that
Fk(nk) and Gk(nk) are concave functions w.r.t. nk.

Lemma 2: Fk(nk) and Gk(nk) are concave w.r.t. nk, and
thus Rk(nk) is the difference of two concave functions Fk(nk)
and Gk(nk).

Proof : Please refer to Appendix C.
Then, similar to the optimization of power allocation,

we adopt the SCA method to solve Problem (P2-2). By denot-
ing the solution n in the (j − 1)-th iteration as n(j−1) and
using Lemma 2 and Jensen’s inequality, we have

Gk(nk) ≤ Gk(n(j−1)
k ) + αk(n(j−1)

k )
(
nk − n

(j−1)
k

)
, (17)

where αk(n(j−1)
k ) is the first-order derivative of Gk(nk) w.r.t.

nk at nk = n
(j−1)
k and is given by

αk(n(j−1)
k ) =

L̃d
k

(
3
(
g̃d

k

)2
n

(j−1)
k +

(
g̃d

k

)3)
2
√

zd
k(n(j−1)

k )
(
n

(j−1)
k + g̃d

k

)3

+
L̃e

k

(
3(g̃e

k)2n(j−1)
k + (g̃e

k)3
)

2
√

ze
k(n(j−1)

k )
(
n

(j−1)
k + g̃e

k

)3 . (18)

By replacing αk(n(j−1)
k ) with the RHS of (18), the sub-

problem to be solved in the jth iteration is given by

(P2− 2− a) : max
n

K∑
k=1

(
ωkFk(nk)−ωkαk(n(j−1)

k )nk

)
(19a)

s.t. (6c), (7c), (19b)

where the constant terms are omitted in the objective function.
Note that the objective function of Problem (P2− 2− a)

is a concave function of nk and the constraints are affine func-
tions. Hence, Problem (P2− 2− a) is a convex optimization
problem. In the following, we provide a low-complexity
algorithm to obtain the globally optimal solution by using
the Lagrangian dual decomposition method [19]. Since Prob-
lem (P2− 2− a) is a convex optimization problem and the
slater’s condition is satisfied,1 the dual gap is zero and the
original problem can be solved by solving its dual problem.
Specifically, we introduce the non-negative Lagrange mul-
tiplier μ ≥ 0 corresponding to the constraint of the total
number of bandwidth units, and the partial Lagrange function
of Problem (P2− 2− a) is given by

L(n, μ) =
∑K

k=1

(
ωkFk(nk)− ωkαk(n(j−1)

k )nk

)
−μ

(∑K

k=1
nk − nmax

)
. (20)

The dual function can be obtained by solving the following
optimization problem:

Y (μ) Δ= max
nk≥0,∀k

∑K

k=1
Lk(nk, μ) + μnmax, (21)

where Lk(nk, μ) is given by

Lk(nk, μ) = ωkFk(nk)− ωkαk(n(j−1)
k )nk − μnk. (22)

Then, the dual problem is given by

min
μ≥0

Y (μ). (23)

To solve the dual problem (23), we need to first obtain
the expression of dual function Y (μ), which needs to solve
Problem (21) with given μ. For given μ, Problem (21) can be
decoupled into K independent optimization problems, and the
optimization problem associated with the kth device is given
by

max
nk≥0

Lk(nk, μ)=ωkFk(nk)−ωkαk(n(j−1)
k )nk−μnk. (24)

1There exist strictly feasible n such as
�K

k=1 nk < nmax.
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The first-order derivative of Lk(nk, μ) w.r.t. nk is derived as

∂Lk(nk, μ)
∂nk

= ωkÑ0 log2

(
nk + g̃d

k

nk + g̃e
k

)

+
ωkÑ0

(
g̃e

k−g̃d
k

)
nk

ln 2
(
nk+g̃d

k

)
(nk+g̃e

k)
−ωkαk

(
n

(j−1)
k

)
− μ. (25)

Since Lk(nk, μ) is a concave function, the optimal solution of
Problem (24) can be derived as follows:
• If ∂Lk(nk,μ)

∂nk

∣∣∣
nk=0

≤ 0, the optimal nk for given μ is

given by n�
k(μ) = 0;

• If ∂Lk(nk,μ)
∂nk

∣∣∣
nk=0

> 0, the optimal nk should satisfy

the equation ∂Lk(nk,μ)
∂nk

= 0, and its root is denoted as

n�
k(μ). As Lk(nk, μ) is a concave function, ∂Lk(nk,μ)

∂nk
is a

decreasing function w.r.t. nk. Thus, n�
k(μ) can be obtained by

the bisection search method when μ is given.
Next, we turn to solve the dual problem by finding the

optimal μ. The optimal value of μ should satisfy the com-
plementary slackness condition for the constraint (6c):

μ

(∑K

k=1
n�

k(μ)− nmax

)
= 0. (26)

From (26), if
∑K

k=1 n�
k(0) ≤ nmax holds, the optimal solu-

tion is given by nk(0), ∀k; Otherwise, the optimal μ should
satisfy W (μ) =

∑K
k=1 n�

k(μ) = nmax. In contrast to the
power allocation solution in (13), the bandwidth unit allocation
nk(μ) cannot be expressed in an explicit function of μ. As a
result, the monotonicity of nk(μ) w.r.t. μ cannot be proved
by checking the sign of the first-order derivative. To deal with
this issue, we have the following lemma:

Lemma 3: W (μ) is a monotonically decreasing function
w.r.t. μ.

Proof: Please refer to Appendix D.
Based on Lemma 3, the optimal μ can be obtained by using

the bisection search method.

D. Algorithm Analysis

1) Algorithm Description: Based on the above analysis,
we summarize the proposed BCD algorithm in Algorithm 1,
where R (n, p) is the weighted throughput defined as
R (n, p) =

∑K
k=1 ωkRk (n, p). This algorithm is a two-layer

iterative algorithm, where the inner layer is the iteration of
the SCA algorithm to solve Problem (P2− 1− a) and Prob-
lem (P2− 2− a), and the outer layer is the BCD algorithm
to solve Problem (P2). In Line 7 of Algorithm 1, p� denotes
the optimal solution obtained by the inner layer to solve
Problem (P2− 1− a), and n� in Line 12 corresponds to the
inner layer to solve Problem (P2− 2− a).

2) Convergence Analysis: In the tth outer iteration, the SCA
algorithm is adopted to solve Problem (P2− 1− a) to
find the power allocation solution. Based on the property
of the SCA algorithm [20], the SCA algorithm is guar-
anteed to converge. Then, we have R

(
n(t−1), p(t)

) ≥
R
(
n(t−1), p(t−1)

)
. Afterwards, the SCA algorithm is used

Algorithm 1 BCD Algorithm for Solving Total Through-
put Maximization

1 Initialize n = n(0), p = p(0), accuracy ε, the iteration
number t = 1 and calculate R

(
n(0), p(0)

)
;

2 repeat
3 Set n = n(t−1), i = 1;
4 repeat
5 Given p(i−1), calculate p(i) by solving

Problem (P2− 1− a), and i← i + 1;
6 until p converges;
7 Update p(t) = p�;
8 Set p = p(t), j = 1;
9 repeat

10 Given n(j−1), calculate n(j) by solving
Problem (P2− 2− a), and j ← j + 1;

11 until n converges;
12 Update n(t) =n� and set t← t+1;
13 until∣∣R (n(t), p(t)

)−R
(
n(t−1), p(t−1)

)∣∣/R (n(t−1), p(t−1)
) ≤ε;

to find the channel bandwidth unit solution. We then
have R

(
n(t), p(t)

) ≥ R
(
n(t−1), p(t)

)
. Hence, we have

R
(
n(t), p(t)

) ≥ R
(
n(t−1), p(t−1)

)
, which shows the solu-

tions obtained by the BCD algorithm are monotonically
increasing. In addition, due to the power and total bandwidth
limits, there exists an upper bound on the total throughput.
Hence, the BCD algorithm is guaranteed to converge.

3) Complexity Analysis: In this part, we analyze the com-
plexity of the BCD algorithm. Note that the main complexity
in each outer layer iteration lies in the SCA algorithms to
solve Problem (P2− 1− a) and Problem (P2− 2− a). For
each inner layer of the SCA algorithm to solve (P2− 1− a),
the bisection search method is adopted to find λ, and
its complexity is O (Klog2

(
1
ε

))
, where ε is the accuracy.

Denote Iin as the total number of iterations required for
the convergence of the SCA algorithm. The total complex-
ity to solve (P2− 1− a) in each outer layer is given by
O (IinKlog2

(
1
ε

))
. By using similar analysis, the total com-

plexity to solve (P2− 2− a) in each outer layer is given by
O (JinKlog2

(
1
ε

))
, where Jin is the total number of iterations

required for the convergence of the SCA algorithm. Denote the
total number of iterations for the BCD algorithm to converge
as NBCD. The total complexity of the BCD algorithm is
given by O (NBCD (Iin + Jin)Klog2

(
1
ε

))
. Hence, the BCD

algorithm can converge to the locally optimal solution in
polynomial time computational complexity.

E. Integer Conversion for n

In general, the solution of n obtained from the BCD
algorithm are positive continuous values, which may violate
the integer constraints. In this part, we provide a greedy
search method to convert the continuous solution into integer
ones. Specifically, denote the solution of n obtained by the
BCD algorithm as n̄ = {n̄1, · · · , n̄K}. The integer conver-
sion problem is a combinatorial optimization problem, and it
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requires exponential time complexity to find the globally opti-
mal solution. In the following, we propose a low-complexity
algorithm based on the greedy search method to find a
suboptimal solution. Firstly, we set the initial value of the
solution as n�

k = �n̄k� , ∀k, where �·� denotes the flooring
operation. Then, there are NRem =

∑K
k=1 n̄k −

∑K
k=1 n�

k

bandwidth units that are not allocated. The remaining task is
to allocate these bandwidth units to the devices. The main
idea of the greedy search method is that each time we
allocate one bandwidth unit to the device with the highest
increment of the total throughput. Denote n� = {n�

1, · · · , n�
K}

and ñk = {n�
1, · · · , n�

k + 1, · · · , n�
K}. For each given n,

we adopt the SCA algorithm to solve Problem (P2− 1), and
denote the optimal value of the total throughput as R (n).
Then, the device index to be allocated one bandwidth unit
is given by k∗ = argmaxk∈K {R (ñk)−R (n�)}, where K
denotes the set of all devices. For the k∗th device, update n�

k =
n�

k + 1. Repeat the above procedure until all the remaining
bandwidth units are allocated, and the power allocation is
updated accordingly based on the final integer solution.

IV. TOTAL TRANSMIT POWER MINIMIZATION

In this section, each device is assumed to have its minimum
throughput requirement, and our goal is to minimize the TTP
by jointly optimizing the bandwidth unit and power allocation.
We first provide the problem formulation and then propose one
efficient algorithm to solve the problem.

A. Problem Formulation

In some application scenarios where the power consumption
of the AP is of great concern, the design paradigm should
be shifted to the energy efficient design by minimizing the
power consumption. Specifically, we aim to jointly optimize
the bandwidth unit and power allocation to minimize the
TTP while guaranteeing each device’s minimum throughput
requirement and the budget of the total available bandwidth
units. Mathematically, this optimization problem is formulated
as follows:

(P3) : min
p,n

∑K

k=1
pk (27a)

s.t. Rk ≥ Dmin
k , ∀k, (27b)

(6c), (6d), (6e), (27c)

where Dmin
k is the minimum throughput requirement of the kth

device. In the following, we always assume that the problem
is feasible.

Problem (P3) can be readily known as a mixed-integer pro-
gramming problem due to the integer constraint on the number
of bandwidth units, which is NP-hard to solve. We notice
that the objective function of Problem (P3) is not related
to the number of bandwidth units and only depends on the
power allocation. Hence, the BCD algorithm that alternately
optimizes the bandwidth unit and power allocation is not
applicable. In the following, we assume that the problem is
feasible and we propose one low-complexity algorithm to
solve this problem.

B. Approximation Method

The complicated expression of data rate Rk makes Prob-
lem (27) difficult to solve. To make it tractable, we approx-
imate V x

k as one, i.e., V x
k ≈ 1, where x ∈ {d, e}. The

approximation is very accurate when SNR rate γx
k is very

high, γx
k 
 1. This approximation has been widely adopted

in the current literature [21], [22]. Define h̃d
k = T |hk|2

/
σ2

d,k

and h̃e = T �he�22
/

σ2
e with h̃d

k > h̃e, the achievable data rate
can be approximated as

Rk ≈ R̃k = Nk

(
log2

(
1+

pkh̃d
k

Nk

)
−log2

(
1 +

pkh̃e

Nk

))

−Nk

(√
1

Nk

Q−1(εk)
ln 2

−
√

1
Nk

Q−1(δk)
ln 2

)
. (28)

Since V x
k < 1, R̃k is actually a lower bound of the original

data rate Rk. Hence, if R̃k ≥ Dmin
k , then Rk ≥ Dmin

k always
holds.

By substituting (28) into Problem (P3), we can now
optimize the channel blocklength allocation N (N =
{N1, · · · , NK}) and the power allocation p, which is
formulated as

(P4) : min
p,N

∑K

k=1
pk (29a)

s.t. R̃k ≥ Dmin
k , ∀k, (29b)∑K

k=1
Nk ≤WcT, (29c)

pk ≥ 0, ∀k (29d)

Nk∈ {B0T, 2B0T, . . . , nmaxBT }, ∀k, (29e)

where Wc is the coherence channel bandwidth. Due to the
discrete constraint on Nk, Problem (P4) is difficult to solve.
To solve this problem, we first remove this constraint and relax
it to continuous values, which is given by

(P4− a) : min
p,N

∑K

k=1
pk (30a)

s.t. (29b), (29c), (29d), (30b)

Nk ≥ 0. (30c)

When Problem (P4-a) is solved, we convert the continuous
Nks into discrete values.

We first solve Problem (P4-a). Obviously, for any given
channel blocklength allocation Nk, R̃k is a monotonically
increasing function of pk. Hence, inequality (29b) holds with
equality at the optimal point. Then, the power allocation can
be expressed as a function of Nk:

pk(Nk) = −Nk

h̃e
+

ckNk

dk − e
ak
Nk

+
bk√
Nk

, (31)

where ak = Dmin
k ln 2, bk = Q−1(εk) + Q−1(δk), ck =(

h̃d
k − h̃e

)/(
h̃e
)2

, and dk = h̃d
k

/
h̃e. To guarantee that Nk

is positive, by using pk(Nk) > 0, we can obtain the lower
bound of Nk as

Nk ≥
(

bk +
√

b2
k + 4ak ln dk

2 ln dk

)2

Δ= N lb
k . (32)



5800 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020

By substituting (31) into Problem (P4-a) and considering
the lower bound of Nk, we have

(P4− b) : min
N

∑K

k=1
pk(Nk) (33a)

s.t. (29c), (32). (33b)

Then, in the following theorem, we provide a sufficient
condition when pk(Nk) is a convex function.

Theorem 2: By defining ρk = − 12ak+b2k
3 and κk =

− 2b4k+36akb2k+108a2
k

27bk
, the function pk(Nk) is a monotonically

decreasing and convex function w.r.t. Nk when the following
condition holds:√

Nk ≤ 2
√
−ρk

3
cosh

(
1
3
arcosh

(
3κk

2ρk

√−3
ρk

))
+

bk

3
. (34)

Proof : Please see Appendix E.
Fortunately, the RHS of (34) only depends on the long-term

system parameters such as Dmin
k , εk, and δk, which is not

related to the relative channel gains. For a typical URLLC
communication system, the number of transmission bits for
each device is around 100 bits (i.e., Dmin

k = 100), the decod-
ing error probability εk is about 10−9, the information leak-
age δk is roughly 10−2 [16]. Then, the value of the RHS
of (34) can be calculated as 23.9. Hence, when Nk ≤ 572,
the inequality in (34) holds. For a typical system, the channel
coherence bandwidth is around 0.5 MHz, and the transmission
delay requirement is 1 ms. Hence, the total number of channel
uses is 500, which should be allocated among all devices.
Then, the number of channel uses allocated to each device is
much smaller than the value of 500. As a result, for practical
communication systems, the inequality in (34) holds and thus
pk(Nk) is a convex function.

Since constraints (29c) and (32) are affine functions, Prob-
lem (P4− b) is a convex problem, which can be solved
by using Lagrangian dual decomposition method. We first
introduce a positive Lagrange multiplier ς associated with
constraint (29c), the partial Lagrangian function of Prob-
lem (P4− b) is given by

L(N , ς) =
∑K

k=1
pk(Nk) + ς

(∑K

k=1
Nk −WcT

)
. (35)

We first need to obtain the optimal N by minimizing L(N , ς)
over N for a given ς:

min
N
L(N , ς). (36)

We denote the optimal Nk for given ς as N�
k (ς). For given ς ,

L(N , ς) is a convex function, and thus the optimal N�
k (ς) can

be obtained as follows:
• If ∂L(N ,ς)

∂Nk
|Nk=N lb

k
≥ 0, the optimal Nk is given by

N�
k (ς) = N lb

k ;
• If ∂L(N ,ς)

∂Nk
|Nk=N lb

k
< 0, N�

k (ς) is the solution to the

equation ∂L(N ,ς)
∂Nk

= 0, which can be obtained by the
bisection search method.

Once obtaining the optimal N�
k (ς), we can obtain the sum

of all channel uses defined as

F (ς) �
∑K

k=1
N�

k (ς). (37)

We need to solve the following equation to find the optimal
dual variable ς:

ς (F (ς)−WcT ) = 0. (38)

If F (0) ≤WcT , then the optimal ς is equal to zero. Otherwise,
we need to solve the equation F (ς) = WcT . By using a
similar method as in Lemma 3, we can prove that F (ς) is a
monotonically decreasing function of ς . Hence, the bisection
search method can be used to find the solution of equation
F (ς) = WcT .

Denote the solution obtained from Problem (P4− b) as
N̄ = {N̄1, · · · , N̄K}. Obviously, the solution N̄ obtained by
using the above the Lagrangian dual decomposition method
do not satisfy the discrete constraint in (29e). Hence, we need
to transfer N̄ to satisfy its discrete constraint. As mentioned
before, this kind of problem is a combinatorial optimiza-
tion problem, which is NP-hard to solve. We again adopt
the greedy search method to solve this problem. Denote
the solution of N that satisfies the discrete constraint as
N� = {N�

1 , · · · , N�
K}. Specifically, we first initialize the

solution of N� as N�
k =

⌊
N̄k

B0T

⌋
· B0T, ∀k. There are other

channel uses that have not been allocated, the number of

which is given by

(
nmax −

K∑
k=1

⌊
N̄k

B0T

⌋)
· B0T . As proved

in Theorem 2, pk(Nk) is a monotonically decreasing function
of Nk. Hence, we can assign the unallocated channel uses
to additionally reduce the power consumption. We allocate
one channel use to the device with the largest decrement
of pk(Nk), i.e., k� = arg max

k∈K
{pk(N�

k ) − pk(N�
k + B0T )}.

For the k�th device, we allocate one bandwidth unit to it
and update N�

k = N�
k + B0T . Repeat this procedure until∑K

k=1 N�
k = WcT .

V. SIMULATION RESULTS

In this section, we provide simulation results to evaluate
the performance of our proposed algorithms. Unless other-
wise specified, the adopted simulation parameters are given
as follows: bandwidth of channel unit of B0 = 1 KHz,
noise power spectrum density of -173 dBm/Hz, number of
devices of K = 4, εk = 10−9, ∀k, δk = 10−2, ∀k, time
duration of T = 1 ms, channel coherence bandwidth of
Wc = 0.5 MHz. The channel path loss is modeled as PL =
35.3 + 37.6log10l (dB) [23], where l (m) is the distance
between the devices/eavesdropper and the AP. The distance
between the eavesdropper and the AP is set as le = 180 (m).

A. Weighted Sum Throughput Maximization

In this subsection, we provide simulation results to evaluate
the performance of the BCD algorithm in Algorithm 1 for the
WST maximization problem. The distances between the AP
and the devices are assumed to be randomly generated within
100 m ∼ 120 m, and the following results are obtained by
averaging over 200 device location generations.

In Fig. 2, we illustrate the convergence behavior of the
BCD algorithm for various number of devices. It is observed
from this figure that the BCD algorithm converges rapidly
for all considered values of K , and roughly ten iterations are
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Fig. 2. Convergence behavior of the BCD algorithm.

Fig. 3. WST versus the total power limit.

sufficient for the convergence of the BCD algorithm. Fig. 2
also shows that larger number of devices leads to slower
convergence speed. The reason is that larger number of devices
corresponds to more optimization variables to be optimized
and require more iterations.

Next, we compare the performance of the proposed BCD
algorithm with the conventional long packet transmission,
where the penalty terms in (4) are not considered and the
throughput of the kth device is given by

Rk = nkB0T
(
log2(1 + γd

k)− log2(1 + γe
k)
)
. (39)

The BCD algorithm can be directly applied by setting some
parameters to zero. This algorithm is labeled as ‘Conven-
tional’. Then, the solution obtained is applied in calculating
the throughput in (5) by considering the penalty terms. This
means that the solution obtained from ‘Conventional’ is used
for obtaining solutions, while the throughput under finite
blocklength is used for performance evaluation.

Fig. 3 shows the WST versus the total power limit for vari-
ous decoding error probabilities ε at the devices. As expected,
the WST of each algorithm increases with an increase of the
maximum available transmit power as higher transmit power
will bring higher value of SNR. The proposed BCD algo-
rithm is observed to outperform the conventional long packet

Fig. 4. WST versus the channel coherence bandwidth.

Fig. 5. WST versus the number of devices.

transmission scheme, and the performance gap increases as the
transmit power limit becomes larger. This may be due to the
fact that larger transmit power corresponds to a higher value
of SNR, and thus V x

k will approach one. Then, the impact of
the penalty terms will increase, which is not considered in the
conventional long packet transmission scheme. We can also
find from this figure that a lower value of the decoding error
probability requirement brings a lower WST. This is because
when δk is large, the value of Q−1(δk) increases, thus leading
to larger values of the penalty terms.

Fig. 4 shows the WST versus the channel coherence band-
width Wc. We observe from Fig. 4 that the WST achieved
by all the schemes increase with the increase of channel
coherence bandwidth. The reason is that higher channel coher-
ence bandwidth corresponds to larger number of channel
uses for each transmission, and thus brings higher through-
put. In contrast to Fig. 3 where the WST logarithmically
increases with the increasing transmit power, the WST linearly
increases with Wc, which demonstrates the significant impact
of the channel coherence bandwidth on the WST performance.
It is again observed that the performance of the proposed
BCD algorithm is better than the conventional long packet
transmission scheme.

Fig. 5 shows the WST versus the number of devices. It is
found from this figure that the WST achieved by the proposed
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Fig. 6. TTP versus the minimum packet size requirement D.

BCD algorithm increases with the number of devices as we
can employ the multiuser diversity to achieve higher perfor-
mance. In contrast, the WST of the conventional long packet
scheme first increases with K and then decreases with K .
The main reason is that the conventional long packet scheme
targets at optimizing (39) without considering the penalty
incurred due to the short packet transmission. The solution
that maximizes (39) may not perform well for the short
packet throughput formula in (5). This again emphasizes the
importance of optimizing the short packet throughput formula
in URLLC applications.

B. Total Transmit Power Minimization

In this subsection, we consider the performance of the
proposed method in Section IV for the TTP minimization
problem. The distance between the AP and the devices are
set as: lk = 100 + 5(k − 1) (m), where k denotes the device
index. The minimum date packet size is Dmin

k = 160 bits.
Three methods are compared. The first one is the solution
obtained by solving Problem (P4− a) (with legend ‘Contin-
uous Relaxation’), which is a relaxed version of the original
Problem (P4). The second one is the solution obtained by
converting the continuous solution of N̄ into the discrete
solution by using the greedy method (with legend ‘Integer
Conversion’). The final one is the solution obtained by equally
allocating the channel bandwidth units to the devices, nk =
nmax/K (with legend ‘Equal BU Allocation’), and the power
allocated to each device can be obtained based on (31).

In Fig. 6, we first study the impact of packet size require-
ment of each device on the TTP. When packet size D
ranges from 100 bits to 200 bits with the interval of 10 bits
in Fig. 6, the upper bound of Nk given in Theorem 2 are
respectively calculated as 573, 625, 677, 730, 783, 837, 890,
944, 998, 1054 and 1109. As WcT = 500, the condition
in Theorem 2 is always satisfied. As expected, the TTP
required monotonically increases with D for all the methods.
Both the Continuous Relaxation and the Integer Conversion
methods have almost the same performance, which implies
the marginal performance loss incurred by the greedy integer

Fig. 7. TTP versus the decoding error probability of the devices.

conversion procedure. Moreover, both these methods are
shown to achieve superior performance over the naive Equal
BU Allocation method, and the performance gain monoton-
ically increases with D. When D ≥ 160 bits, the Equal
BU Allocation method becomes even infeasible, while the
proposed algorithm can support the packet size up to 200 bits.
The reason can be explained as follows. When the channel
blocklength is equally allocated among the devices, the QoS
of the device with worse channel gain cannot be satisfied
even when all the available power is allocated to this device.
Hence, the optimization problem associated with the Equal BU
Allocation has no feasible solution. In contrast, our proposed
algorithm dynamically allocated the channel blocklength bases
on each device’s channel condition: the device with bad chan-
nel condition can be allocated with more channel blocklength
to satisfy its QoS requirement. Hence, our proposed algorithm
not only achieved high WST, but also has larger feasible range.
This implies the importance of optimizing the bandwidth unit
allocation.

In Fig. 7, we investigate the impact of the decoding error
probability requirement of the devices on the TTP. When the
decoding error probability ranges from 10−12 to 10−4 with
the interval shown in Fig. 6, the upper bound of Nk given in
Theorem 2 are respectively calculated as 896, 890, 887, 887,
888, 890, 892, 895, and 899. As WcT = 500, the condition
in Theorem 2 is always satisfied. It is observed that the TTP
required by all the methods decrease with εk. This can be
explained as follows. According to (4), Rk is a monotonically
decreasing function of εk. When εk is small, more power
is required to achieve the desired throughput requirement.
Again, the proposed algorithms are observed to have better
performance than the Equal BU Allocation method, especially
when the decoding error probability is extremely small.

The impact of the channel bandwidth on the system perfor-
mance is shown in Fig. 8. For various values of Wc, the upper
bounds of Nk given in Theorem 2 are the same that are all
equal to 891. In addition, the lower bounds of Nk given in (32)
for four devices are respectively given by 85, 95, 107, and 120.
When Wc = 1.1 MHz, WcT has the maximum value of 1100.
Then, the maximum values of Nk, k = 1, · · · , 4 are given by
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Fig. 8. Sum power versus the channel coherence bandwidth.

Fig. 9. Sum power versus the number of devices.

778, 788, 800, and 813, respectively. This means the maximum
achievable value of Nk is smaller than upper bound of Nk

given in Theorem 2. Hence, the condition in Theorem 2 is
always satisfied. We can find from Fig. 8 that the TTP
required by all the methods decreases with increasing channel
coherence bandwidth. This is mainly due to the fact that when
the channel coherence bandwidth increases, the total number
of channel users increases, which can enhance throughput.
It is interesting to observe that when the channel coherence
bandwidth is sufficiently large, the proposed algorithms can
only achieve negligible performance advantage over the Equal
BU Allocation method, which implies the equal bandwidth
unit allocation is nearly optimal for large channel coherence
bandwidth.

In Fig. 9, we study the impact of the number of devices
on the system performance where the channel coherence
bandwidth is assumed to be Wc = 1 MHz. For various values
of K , the upper bounds of Nk given in Theorem 2 are the
same that are equal to 891. In addition, the lower bounds of
Nk given in (32) for the case of three devices are respectively
given by 85, 95, and 107. When Wc = 1 MHz, WcT has
the maximum value of 1000. Then, the maximum values of

Fig. 10. WST performance comparison between exhaustive search method
and the proposed method.

Nk, k = 1, · · · , 3 are given by 798, 808, and 820, respectively.
This means the maximum achievable value of Nk is smaller
than the upper bound of Nk given in Theorem 2. Hence,
the condition in Theorem 2 is always satisfied. It is observed
that the sum power increases rapidly with the number of
devices. This is because when the number of devices is large,
the number of bandwidth units allocated to each device will
decrease, which requires more power to transmit the targeted
throughput.

C. Comparison With Exhaustive Search Method

Finally, we compare our proposed method with the exhaus-
tive search method. Due to the high complexity of the exhaus-
tive search method, we consider a small network with two
devices.

First, we study the WSR performance comparison between
the proposed algorithm with the exhaustive search method
in Fig. 10. The other simulation parameters are set to be
same as in Subsection V-A. For the exhaustive search method,
we enumerate all possible bandwidth unit allocations, and the
algorithm in Subsection III-B is adopted to solve the power
allocation problem for each given allocation of the bandwidth
units. It can be seen from Fig. 10 that our proposed algorithm
can achieve almost the same performance as the exhaustive
search method for the whole range of transmission power,
which verifies the effectiveness of our proposed method.

Then, we compare our proposed algorithm for the TTP
minimization problem with the exhaustive search method
in Fig. 11. The parameters are set to the same as in Sub-
section V-B. The condition in Theorem 2 can be verified
to hold. For the exhaustive search method, we enumerate
all possible bandwidth unit allocations, and we use the line
search method to find the minimum transmit power for
each user to satisfy the minimum throughput requirement.
It can be observed from Fig. 11 that the proposed method
achieves the similar performance when the channel band-
width is small, while the performance gap increases with
the channel bandwidth. However, the maximum performance
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Fig. 11. TTP performance comparison between exhaustive search method
and the proposed method.

gap is less than 1 dBm, which is acceptable considering the
lower complexity associated with the proposed method. This
means our proposed algorithm is more appealing for practical
applications.

VI. CONCLUSION

In this paper, we studied a secure mission-critical IoT
communication system under URLLC requirements, where
the AP transmits safety-critical messages to the devices and
there exists an eavesdropper that attempts to eavesdrop this
critical message. Under this context, we considered the WST
maximization problem and the TTP minimization problem
through joint bandwidth unit and power allocation. For the
WST maximization problem, we provided the BCD algo-
rithm to decouple the original coupled optimization problem,
and obtain its solution in an iterative manner. For the TTP
minimization problem, we derived the sufficient condition
when this problem is a convex problem, and we showed that
most of the typical URLLC applications satisfy this condition.
Low-complexity and efficient algorithms were proposed to
find the globally optimal solution, and the greedy method was
utilized to convert the continuous solutions into discrete solu-
tions. Simulation results demonstrate the rapid convergence
of the BCD algorithm, and performance advantages over the
conventional long packet transmission scheme. For the method
to solve the TTP minimization problem, simulation results
validate the performance advantages in terms of power savings
compared with the naive equal bandwidth unit allocation
scheme.

APPENDIX A
PROOF LEMMA 1

We first prove that fk(pk) is a concave function. The
second-order derivative of fk(pk) w.r.t. pk is given by

f ��
k (pk) =

Nk

ln 2
ḡe

k−ḡd
k(

1+pkḡd
k

)
(1+pkḡe

k)

(
ḡe

k

1+pkḡe
k

+
ḡd

k

1 + pkḡd
k

)
< 0, (40)

where the last inequality holds since ḡd
k > ḡe

k. Hence, fk(pk)
is a concave function w.r.t. pk. Similarly, the second-order
derivative of yk(pk) w.r.t. pk is given by

y��
k (pk) = −

(
ḡd

k

)2
Ld

k

(
3− 2

(
1 + pkḡd

k

)−2
)

(
1− (1 + pkḡd

k

)−2
) 3

2 (
1 + pkḡd

k

)4
−

(ḡe
k)2Le

k

(
3− 2(1 + pkḡe

k)−2
)

(
1− (1 + pkḡe

k)−2
) 3

2
(1 + pkḡe

k)4
< 0. (41)

Hence, yk(pk) is a concave function w.r.t. pk. As a result,
Rk(pk) is the difference of two concave functions fk(pk)
and yk(pk), which completes the proof.

APPENDIX B
PROOF THEOREM 1

Let us define λ ≥ 0 and µ = {μ1, · · · , μK} as the
non-negative dual variables associated with the total power
constraint (6b) and the individual non-negative power con-
straint (6e), respectively. The Lagrangian function of Prob-
lem (P2− 1− a) can be formulated as

L(p, µ, λ) =
∑K

k=1

(
ωkfk (pk)− ωkβk(p(i−1)

k )pk

)
−λ

(∑K

k=1
pk − Pmax

)
+
∑K

k=1
μkpk. (42)

Since Problem (P2− 1− a) is a convex optimization prob-
lem, the globally optimal solution satisfies the Karush-
Kuhn-Tucker (KKT) conditions as follows:

∂L(p, µ, λ)
∂pk

=
Nk

ln 2
ωk(ḡd

k − ḡe
k)(

1 + pkḡd
k

)
(1 + pkḡe

k)
− ωkβk(p(i−1)

k )

−λ + μk = 0, ∀k,

μkpk = 0, pk≥0, ∀k, λ

(
K∑

k=1

pk−Pmax

)
=0,

K∑
k=1

pk ≤ Pmax. (43)

Note that μk, ∀k are slack variables in the first equation, which
can be eliminated. We then have:(
ωkβk(p(i−1)

k )+λ− Nk

ln 2
ωk(ḡd

k − ḡe
k)(

1 + pkḡd
k

)
(1 + pkḡe

k)

)
pk =0, ∀k,

ωkβk(p(i−1)
k ) + λ ≥ Nk

ln 2
ωk(ḡd

k − ḡe
k)(

1 + pkḡd
k

)
(1 + pkḡe

k)
, ∀k,

λ

(∑K

k=1
pk−Pmax

)
=0,

∑K

k=1
pk ≤ Pmax, pk ≥ 0, ∀k.

(44)
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By defining η
(i−1)
k (λ) in Theorem 1, the KKT conditions

in (44) can be rewritten as((
1 + pkḡd

k

)
(1 + pkḡe

k)− η
(i−1)
k (λ)

)
pk = 0, ∀k,(

1 + pkḡd
k

)
(1 + pkḡe

k) ≥ η
(i−1)
k (λ), ∀k,

λ

(∑K

k=1
pk − Pmax

)
=0,

∑K

k=1
pk≤Pmax, pk ≥0, ∀k.

(45)

If η
(i−1)
k (λ) > 1, the conditions in (45) hold only when

pk > 0. This can be proved by using the contradiction
method. Assume that pk = 0. Then, based on the second
condition of (45), we have 1 ≥ η

(i−1)
k (λ), which contradicts

the condition of η
(i−1)
k (λ) > 1. Hence, pk > 0 should hold.

Then, based on the first condition of (45), pk should satisfy
the following equation:(

1 + pkḡd
k

)
(1 + pkḡe

k)− η
(i−1)
k (λ) = 0, (46)

and its solution is given in (13) in Theorem 1.
On the other hand, if η

(i−1)
k (λ) ≤ 1, then pk must be equal

to zero. This can also be proved by using the contradiction
method. Assume that pk > 0. Then, based on the first
condition of (45), the equation in (46) should hold, and pk

is derived as:

pk =
− (ḡd

k + ḡe
k

)
+
√(

ḡd
k + ḡe

k

)2 − 4ḡd
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kḡe
k

≤
− (ḡd
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ḡd
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k

)2
2ḡd

kḡe
k

= 0,

which contradicts the assumption of pk > 0. Hence, pk must
be equal to zero.

Combining the above two cases, the optimal solution of
pk is given in (13) in Theorem 1. The remaining part of
Theorem 1 can be readily proved by using the similar analysis
for the total power constraint, details of which are omitted for
simplicity.

APPENDIX C
PROOF OF LEMMA 2

We first prove that Fk(nk) is a concave function w.r.t.
nk. With some manipulations, the second-order derivative of
F (nk) w.r.t. nk is given by

F ��
k (nk) =

Ñ0

(
g̃e

k − g̃d
k

) ((
g̃e

k + g̃d
k

)
nk + 2g̃e

kg̃d
k

)
ln 2 (nk + g̃e

k)2
(
nk + g̃d

k

)2 < 0, (47)

where the inequality holds since ḡe
k < ḡd

k. Hence, Fk(nk) is a
concave function w.r.t. nk.

Now, we start to prove that Gk(nk) is also a concave
function w.r.t. nk. With some manipulations, the second-order

derivative of Gk(nk) w.r.t. nk is given by

G��
k(nk) =

2∂2zd
k(nk)

∂n2
k

zd
k(nk)−

(
∂zd
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∂nk
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where ∂2zx
k(nk)

∂n2
k

is given by

∂2zx
k (nk)

∂n2
k

= − 6nk(g̃x
k)2

(nk + g̃x
k)4

< 0, x ∈ {d, e}. (49)

Then, combining (49) with (48), we know that ∂2Gk(nk)
∂n2

k
< 0.

Hence, Gk(nk) is also a concave function w.r.t. nk, and
Rk(nk) is the difference of two concave functions Fk(nk)
and Gk(nk).

APPENDIX D
PROOF OF LEMMA 3

We consider a pair of dual variables μ1 and μ2, where
μ1 ≥ μ2. Denote n�

k(μ1) and n�
k(μ2) as the optimal solution

of Problem (24) when μ = μ1 and μ = μ2, respectively. Since
n�

k(μ1) is the optimal solution of Problem (24) when μ = μ1,
we have

Lk(n�
k(μ1), μ1)

= Fk(n�
k(μ1))− αk(n(j−1)

k )n�
k(μ1)− μ1n

�
k(μ1)

≥ Lk(n�
k(μ2), μ1)

= Fk(n�
k(μ2))− αk

(
n

(j−1)
k

)
n�

k(μ2)− μ1n
�
k(μ2). (50)

Furthermore, n�
k(μ2) is the optimal solution of Problem (24)

when μ = μ2, we have

Lk(n�
k(μ2), μ2)

= Fk(n�
k(μ2))− αk(n(j−1)

k )n�
k(μ2)− μ2n

�
k(μ2)

≥ Lk(n�
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= Fk(n�
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k )n�
k(μ1)− μ2n

�
k(μ1). (51)

By adding these two inequalities and simplifying them,
we have (n�

k(μ1)− n�
k(μ2)) (μ2 − μ1) ≥ 0. Since μ1 > μ2,

we have n�
k(μ1) < n�

k(μ2). Then, by summing all these
K inequalities, we have W (μ1) =

∑K
k=1 n�

k(μ1) <∑K
k=1 n�

k(μ2) = W (μ2). Hence, W (μ) is a monotonically
decreasing function of μ.

APPENDIX E
PROOF OF THEOREM 2

We first prove its convexity. With some manipulations,
the second-order derivative of pk(Nk) w.r.t. Nk is calculated
as

p��k(Nk)=
ckdk

N3
k

e
ak
Nk

+
bk√
Nk Ξ(Nk)+ ck

N3
k
e

2ak
Nk

+
2bk√

Nk Φ(Nk)(
dk − e

ak
Nk

+
bk√
Nk

)3 , (52)
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where Ξ(Nk) and Φ(Nk) are given by

Ξ(Nk) = −bk

4
N

3
2
k +

b2
k

4
Nk + akbkN

1
2
k + a2

k,

Φ(Nk) =
bk

4
N

3
2
k +

b2
k

4
Nk + akbkN

1
2
k + a2

k. (53)

Since Nk > N lb
k , the denominator of (52) is larger than zero.

Obviously, Φ(Nk) is larger than zero. Hence, if Ξ(Nk) > 0,
then p��k(Nk) > 0 holds and pk(Nk) is a convex function of
Nk. Next, we derive the condition when Ξ(Nk) > 0.

Denote tk = N
1
2
k . Then, Ξ(Nk) can be re-expressed as

Ξ(tk) = −bk

4
t3k +

b2
k

4
t2k + akbktk + a2

k. (54)

Note that Ξ(0) = a2
k > 0 and Ξ(+∞) = −∞. Since Ξ(tk)

is a continuous function, there must exist at least one positive
solution for the equation Ξ(tk) = 0. In the following, we prove
that the solution is unique.

We rewrite equation Ξ(tk) = 0 as a standard cubic equation:

ukt3k + vkt2k + wktk + zk = 0, (55)

where uk = − bk

4 , vk = b2k
4 , wk = akbk, and zk = a2

k.
By dividing (55) by uk and inserting tk = xk − vk/3uk,

we have

x3
k + ρkxk + κk = 0, (56)

where ρk and κk are defined in Theorem 2. It can be readily
verified that

4ρ3
k + 27κ2

k > 0, κk > 0, ρk < 0. (57)

As a result, there exists only one real solution for (56), which
is given by

x∗
k = −2

√
−ρk

3
cosh

(
1
3
arcosh

(−3κk

2ρk

√−3
ρk

))
. (58)

Thus, the unique solution of equation (55) is given by
t∗k = x∗

k − vk/3uk.
Based on the above discussion, we can conclude that when

tk < t∗k = x∗
k − vk/3uk, Ξ(tk) is positive and pk(Nk) is a

convex function.
Now we proceed to prove that pk(Nk) is a monotonically

decreasing function when inequality (34) holds. The first-order
derivative of pk(Nk) w.r.t. pk is given by

p�k(Nk)

= − 1
h̃e

+
ck

(
dk − e

ak
Nk

+
bk√
Nk

)
−cke

ak
Nk

+
bk√
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(
ak

Nk
+ bk√
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ak
Nk

+
bk√
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)2 .

(59)

Since pk(Nk) is a convex function when inequality (34) holds,
p�k(Nk) is a monotonically increasing function. Then, we have

p�k(Nk) < p�k(∞) = 0. (60)

In consequence, pk(Nk) is a monotonically decreasing func-
tion when inequality (34) holds.

REFERENCES

[1] M. Shafi et al., “5G: A tutorial overview of standards, trials, challenges,
deployment, and practice,” IEEE J. Sel. Areas Commun., vol. 35, no. 6,
pp. 1201–1221, Jun. 2017.

[2] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5,
pp. 2307–2359, May 2010.

[3] J. Chen, L. Zhang, Y.-C. Liang, X. Kang, and R. Zhang, “Resource
allocation for wireless-powered IoT networks with short packet commu-
nication,” IEEE Trans. Wireless Commun., vol. 18, no. 2, pp. 1447–1461,
Feb. 2019.

[4] C. Pan, H. Ren, Y. Deng, M. Elkashlan, and A. Nallanathan, “Joint
blocklength and location optimization for URLLC-enabled UAV relay
systems,” IEEE Commun. Lett., vol. 23, no. 3, pp. 498–501, Mar. 2019.

[5] H. Ren, C. Pan, K. Wang, Y. Deng, M. Elkashlan, and A. Nallanathan,
“Achievable data rate for URLLC-enabled UAV systems with 3-D chan-
nel model,” IEEE Wireless Commun. Lett., vol. 8, no. 6, pp. 1587–1590,
Dec. 2019.

[6] X. Sun, S. Yan, N. Yang, Z. Ding, C. Shen, and Z. Zhong, “Short-
packet downlink transmission with non-orthogonal multiple access,”
IEEE Trans. Wireless Commun., vol. 17, no. 7, pp. 4550–4564,
Jul. 2018.

[7] C. She, Y. Duan, G. Zhao, T. Q. S. Quek, Y. Li, and B. Vucetic, “Cross-
layer design for mission-critical IoT in mobile edge computing systems,”
IEEE Internet Things J., vol. 6, no. 6, pp. 9360–9374, Dec. 2019.

[8] H. Ren et al., “Joint power and blocklength optimization for URLLC in
a factory automation scenario,” IEEE Trans. Wireless Commun., vol. 19,
no. 3, pp. 1786–1801, Mar. 2020.

[9] H. Ren, C. Pan, Y. Deng, M. Elkashlan, and A. Nallanathan, “Joint pilot
and payload power allocation for massive-MIMO-enabled URLLC IIoT
networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 5, pp. 816–830,
May 2020. [Online]. Available: https://arxiv.org/abs/1912.12438

[10] A. Mukherjee, S. A. A. Fakoorian, J. Huang, and A. L. Swindlehurst,
“Principles of physical layer security in multiuser wireless networks: A
survey,” IEEE Commun. Surveys Tuts., vol. 16, no. 3, pp. 1550–1573,
3rd Quart., 2014.

[11] A. Mukherjee, “Physical-layer security in the Internet of Things: Sensing
and communication confidentiality under resource constraints,” Proc.
IEEE, vol. 103, no. 10, pp. 1747–1761, Oct. 2015.

[12] Z. Li, M. Chen, C. Pan, N. Huang, Z. Yang, and A. Nallanathan, “Joint
trajectory and communication design for secure UAV networks,” IEEE
Commun. Lett., vol. 23, no. 4, pp. 636–639, Apr. 2019.

[13] Y. Zhou et al., “Secure communications for UAV-enabled mobile edge
computing systems,” IEEE Trans. Commun., vol. 68, no. 1, pp. 376–388,
Jan. 2020.

[14] Y. Cao et al., “Secure transmission via beamforming optimization for
NOMA networks,” IEEE Wireless Commun., vol. 27, no. 1, pp. 193–199,
Feb. 2020.

[15] W. Yang, R. F. Schaefer, and H. V. Poor, “Wiretap channels: Nonas-
ymptotic fundamental limits,” IEEE Trans. Inf. Theory, vol. 65, no. 7,
pp. 4069–4093, Jul. 2019.

[16] H.-M. Wang, Q. Yang, Z. Ding, and H. V. Poor, “Secure short-packet
communications for mission-critical IoT applications,” IEEE Trans.
Wireless Commun., vol. 18, no. 5, pp. 2565–2578, May 2019.

[17] H. Ren, C. Pan, Y. Deng, M. Elkashlan, and A. Nallanathan, “Resource
allocation for URLLC in 5G mission-critical IoT networks,” in Proc.
IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–6.

[18] Q. Dinh et al., “Local convergence of sequential convex program-
ming for nonconvex optimization,” in Recent Advances in Optimization
and its Applications in Engineering. Berlin, Germany: Springer, 2010,
pp. 93–102.

[19] S. Boyd, Convex Optimization. Cambridge, U.K.: Cambridge Univ.
Press, 2004.

[20] C. Pan, H. Ren, M. Elkashlan, A. Nallanathan, and L. Hanzo, “Robust
beamforming design for ultra-dense user-centric C-RAN in the face of
realistic pilot contamination and limited feedback,” IEEE Trans. Wireless
Commun., vol. 18, no. 2, pp. 780–795, Feb. 2019.

[21] C. She, C. Yang, and T. Q. S. Quek, “Joint uplink and downlink resource
configuration for ultra-reliable and low-latency communications,” IEEE
Trans. Commun., vol. 66, no. 5, pp. 2266–2280, May 2018.

[22] C. Sun, C. She, C. Yang, T. Q. S. Quek, Y. Li, and B. Vucetic,
“Optimizing resource allocation in the short blocklength regime for
ultra-reliable and low-latency communications,” IEEE Trans. Wireless
Commun., vol. 18, no. 1, pp. 402–415, Jan. 2019.

[23] Further Advancements for E-UTRA Physical Layer Aspects, E. U. T. R.
Access, 3GPP document TR 36.814, 2010.



REN et al.: RESOURCE ALLOCATION FOR SECURE URLLC IN MISSION-CRITICAL IoT SCENARIOS 5807

Hong Ren (Member, IEEE) received the B.S.
degree in electrical engineering from Southwest
Jiaotong University, Chengdu, China, in 2011, and
the M.S. and Ph.D. degrees in electrical engi-
neering from Southeast University, Nanjing, China,
in 2014 and 2018, respectively. From October 2016
to January 2018, she was a Visiting Student with
the School of Electronics and Computer Science,
University of Southampton, U.K. She is currently
a Post-Doctoral Scholar with the School of Elec-
tronic Engineering and Computer Science, Queen

Mary University of London, U.K. Her research interests lie in the areas
of communication and signal processing, including cooperative transmission,
the Internet of Things, and ultra-reliability and low latency communications.

Cunhua Pan (Member, IEEE) received the B.S.
and Ph.D. degrees from the School of Informa-
tion Science and Engineering, Southeast University,
Nanjing, China, in 2010 and 2015, respectively.

From 2015 to 2016, he was a Research Asso-
ciate with the University of Kent, U.K. He held a
post-doctoral position at the Queen Mary University
of London, U.K., from 2016 and 2019, where he is
currently a Lecturer. His research interests mainly
include intelligent reflection surface (IRS), machine
learning, UAV, the Internet of Things, and mobile

edge computing. He serves as a TPC member for numerous conferences,
such as ICC and GLOBECOM, and the Student Travel Grant Chair for ICC
2019. He also serves as an Editor of IEEE WIRELESS COMMUNICATION
LETTERS and IEEE ACCESS.

Yansha Deng (Member, IEEE) received the Ph.D.
degree in electrical engineering from the Queen
Mary University of London, U.K., in 2015. From
2015 to 2017, she was a Post-Doctoral Research
Fellow with King’s College London, U.K., where
she is currently a Lecturer (Assistant Professor)
with the Department of Informatics. Her research
interests include molecular communication, machine
learning, and 5G wireless networks. She was a recip-
ient of the Best Paper Awards from ICC 2016 and
Globecom 2017 as the first author. She is currently

an Associate Editor of IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE
TRANSACTIONS ON MOLECULAR, BIOLOGICAL AND MULTI-SCALE COM-
MUNICATIONS, and a Senior Editor of IEEE COMMUNICATION LETTERS.
She also received the Exemplary Reviewer of IEEE TRANSACTIONS ON

COMMUNICATIONS in 2016 and 2017, and IEEE TRANSACTIONS ON WIRE-
LESS COMMUNICATIONS in 2018. She has also served as a TPC member for
many IEEE conferences, such as IEEE GLOBECOM and ICC.

Maged Elkashlan (Member, IEEE) received the
Ph.D. degree in electrical engineering from The Uni-
versity of British Columbia, Canada, in 2006. From
2007 to 2011, he was with Commonwealth Scien-
tific and Industrial Research Organization (CSIRO),
Australia. During this time, he held visiting appoint-
ments at the University of New South Wales and the
University of Technology Sydney. In 2011, he joined
the School of Electronic Engineering and Computer
Science, Queen Mary University of London, U.K.
His research interests include communication theory

and statistical signal processing. He received the Best Paper Award at
the IEEE International Conference on Communications (ICC) in 2016 and
2014, the International Conference on Communications and Networking in
China (CHINACOM) in 2014, and the IEEE Vehicular Technology Confer-
ence (VTC-Spring) in 2013. He currently serves as an Editor of IEEE TRANS-
ACTIONS ON WIRELESS COMMUNICATIONS and IEEE TRANSACTIONS ON
VEHICULAR TECHNOLOGY.

Arumugam Nallanathan (Fellow, IEEE) has been a
Professor of wireless communications and the Head
of the Communication Systems Research (CSR)
Group, School of Electronic Engineering and Com-
puter Science, Queen Mary University of London,
since September 2017. He was with the Depart-
ment of Informatics, King’s College London, from
December 2007 to August 2017, where he was
a Professor of wireless communications from
April 2013 to August 2017 and has been a Visiting
Professor since September 2017. He was an Assis-

tant Professor with the Department of Electrical and Computer Engineering,
National University of Singapore, from August 2000 to December 2007.
He published nearly 500 technical papers in scientific journals and inter-
national conferences. His research interests include artificial intelligence for
wireless systems, beyond 5G wireless networks, the Internet of Things (IoT),
and molecular communications.

Dr. Nallanathan was a co-recipient of the Best Paper Award presented at
the IEEE International Conference on Communications 2016 (ICC’2016),
IEEE Global Communications Conference 2017 (GLOBECOM’2017), and
IEEE Vehicular Technology Conference 2018 (VTC’2018). He received
the IEEE Communications Society SPCE outstanding service award 2012 and
IEEE Communications Society RCC outstanding service award 2014.
He served as the Chair for the Signal Processing and Communication
Electronics Technical Committee of IEEE Communications Society and a
Technical Program Chair and a member of Technical Program Committees in
numerous IEEE conferences. He is an IEEE Distinguished Lecturer. He has
been selected as a Web of Science Highly Cited Researcher in 2016. He was
an Editor for IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS from
2006 to 2011, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY from
2006 to 2017, and IEEE SIGNAL PROCESSING LETTERS. He is an Editor for
IEEE TRANSACTIONS ON COMMUNICATIONS and a Senior Editor for IEEE
WIRELESS COMMUNICATIONS LETTERS.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


